
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Quantitative Analysis of Various  
2D CNN Structures based on Dataflow 

 

 

Sangwon Lee  
Dept. of Electronics Engineering 
Chungnam National University  

Daejeon, Korea 
swlee.cas@gmail.com 

Yongtaek Hwang 
Dept. of Electronics Engineering 
Chungnam National University 

Daejeon, Korea 
ythwang.cas@gmail.com 

Jiho Park  
Dept. of Electronics Engineering 
Chungnam National University  

Daejeon, Korea 
jhpark.cas@gmail.com 

Soyeon Choi 
Dept. of Electronics Engineering 
Chungnam National University 

Daejeon, Korea 
sychoi.cas@gmail.com 

Jeongho Kim 
Dept. of Electronics Engineering 
Chungnam National University  

Daejeon, Korea 
jhkim.cas@gmail.com 

Hoyoung Yoo 
Dept. of Electronics Engineering 
Chungnam National University 

Daejeon, Korea 
hyyoo@cnu.ac.kr 

Abstract—Convolutional Neural Networks (CNNs) are used 
in a wide range of fields due to their excellent accuracy. Previous 
researchers have proposed convolution architectures for the 
typical convolutional layer in CNN whose input is larger than 
the kernel size. However, neural networks are continuously 
evolving and developing, and there is a deep convolutional layer 
unlike classic CNNs demands a larger kernel size than the input. 
In this paper, we conduct a quantitative analysis based on 
dataflow for various CNN structures. A total of eight 2D CNN 
structures are described and compared in terms of processing 
time, total area, and energy efficiency, based on different 
dataflow graphs. As a result, the comparison provides 
advantages and disadvantages of the different CNN structures 
and aids in determining the optimal hardware structure solution 
for various neural network types. 

Keywords— convolutional neural networks, convolutional 
architecture, dataflow 

I. INTRODUCTION 

Due to their high precision, artificial neural networks that 
imitate the behavior of the human brain have been widely used 
in many applications, including computer vision, speech 
recognition, and language translation. Among the various 
types of neural networks (NNs), convolutional neural 
networks (CNNs) outperform traditional signal processing 
techniques, especially in the field of image recognition [1]. 
Convolution comprises about 90 percent of CNN's overall 
computations and conducts matrix multiplication [2]. In 
general CNN structure, multiple processing elements (PEs) 
are often run in parallel to accelerate the CNN hardware 
accelerator's computations. The growth of PEs enables the 
simultaneous processing of complicated matrix products. One 
of the problems of implementing CNN hardware accelerators 
is the significant energy consumption caused by memory 
access to store the output and give the input necessary for the 
matrix product. 

Various studies have been conducted to optimize memory 
structure and data flow to reduce energy consumption due to 
excessive memory access [3-5]. [3] utilizes a hierarchical 
memory structure and [4] proposes the application of FIFO 
memory to efficiently manage input/output data and minimize 
unnecessary memory access. While [3-4] focus on memory 
structures, [5] presents a novel approach to optimizing PE and 
memory configurations through data flow optimization. [5] 
has analyzed the access pattern of memory by focusing on 

dataflow and proposed a hardware structure capable of 
minimizing memory access. More precisely speaking, three 
data flows are presented for input, kernel, and output, which 
are the basic components of convolution, and a total of 27 
combinations are presented for a single convolution 
configuration. Of the total 27 combinations, four promising 
candidates were determined, and the final structure was 
proposed through analytic comparison. Research [5] has great 
significance in analyzing data flows and providing a 
framework for convolution configuration, but unlike the 
recent development of neural networks, it identifies a 
promising candidate based on the classic neural networks, 
which have limitations in final structure selection. Recently, 
there have been neural networks such as deep convolution 
where the kernel size is larger than the input size, and in this 
case, the promising candidate suggested in [5] might be 
changed. Therefore, this paper presents a total of eight 
candidates by adding four new promising candidates to the 
four proposed candidates determined in [5] and analyzes the 
advantages and disadvantages of each candidate. By 
comparing and analyzing inputs and kernels of various sizes, 
it is possible to provide an optimal hardware structure solution 
for various types of neural networks as well as the classic 
neural networks 

II. BACKGROUND 

A CNN is a composition of multi-layered convolution to 
perform a given neural network operation. A single CNN is 
scalable from 1-dimension to 3-dimension, and we focus on 
the 2-dimension (2D). As shown in Equation (1), the 2D 
convolution operation takes f(y+b)(x+a) as an input, performs a 
convolution operation with kernel wba, and outputs oyx. 

1 1

( )( )
0 0

K K

yx ba y b x a
b a

o w f
 

 
 

  , (1) 

Where x, y have a range of output indexes (0  x  L-K) and 
a, b have a range of kernel indexes (0  a, b  K). Note that L 
and K indicate the size of the input and the kernel, respectively, 
and the indices satisfy y+b, x+a = L.  

To analyze the operation of (1) as data flow, [5] describes 
the flow of data transmission between PE and memory in three 
ways: broadcast, stay, and forward. Broadcast refers to a data 
flow in which data stored in memory is connected to the entire 
PE and transmitted at once. Next, stay refers to a data flow in 

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

le
ct

ro
ni

cs
, I

nf
or

m
at

io
n,

 a
nd

 C
om

m
un

ic
at

io
n 

(I
C

EI
C

) |
 9

79
-8

-3
50

3-
20

21
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
EI

C
57

45
7.

20
23

.1
00

49
91

0

Authorized licensed use limited to: Chungnam National University. Downloaded on April 11,2023 at 11:37:07 UTC from IEEE Xplore.  Restrictions apply. 



which data stored in the memory is allocated to each PE and 
used as a dedicated memory. Lastly, forward refers to a data 
flow in which data stored in a memory is sequentially 
transmitted from a PE to a neighboring PE. Based on the three 
basic data flows, Fig. 1 shows the hardware structure when 
input data and kernel weight are loaded, and Fig. 2 shows the 
hardware structure when storing output data, respectively. 
Broadcast in Fig. 1(a) and Fig. 2(a) implements an architecture 
in a form in which one input memory (IM), kernel memory 
(KM), or output memory (OM) is connected to all the PEs. 
Stay in Fig. 1(b) and Fig. 2(b) has a form in which IM, KM, 
or OM memory allocated independently to one PE is 
attributed. Lastly, Fig. 1(c) and Fig. 2(c) have the data flow of 
forward in which data from IM, KM, or OM memory is 
sequentially transferred to several PEs. In summary, since the 
data flow of broadcast, stay, and forward can be independently 
obtained for input, kernel, and output, there are a total of 27 
architectures to perform (1). In this paper, the architecture is 
named after the first letter of the data flow assigned to the 
input, kernel, and output. For example, BSF represents a 
structure that operates as broadcast for input, stay for the 
kernel, and forward for output. 

III. ANALYSIS OF 2D CNN STRUCTURE 

In this paper, the analysis was conducted on a total of 27 
components by reflecting the three basic data flows that input, 
kernel, and output can have, and 8 promiscuous candidates 
were identified from a practical point of view. Previous 
research [5] has great significance in analyzing the data flow 
and providing the basis for the convolution configuration. 
However, the promising candidates are determined based only 
on the typical neural network, which limits the final structure 
selection. In other words, through the recent innovative 
development of neural networks, the criteria for the most 
promising candidate can vary in addition to the general criteria. 
We present a total of eight structures by adding four 
candidates considering advanced neural networks in addition 
to the four promising candidates suggested in [5] and compare 
their advantages and disadvantages. Before presenting the 
selected eight candidates, the excluded configuration from a 
total of 27 combinations and the reason will be described. First, 
it is the case that additional add trees are needed to match the 
data flow. This includes BBX and SSX or XXB. Where X 
means don't care, and broadcast, stay, and forward are all 
applicable. Second, it is the case where a combination logic 

PE

PE

PE

PE

IM/KM

 

PEIM/KM

PEIM/KM

PEIM/KM

PEIM/KM
 

IM/KM PE

PE

PE

PE  

(a) Broadcast (b) Stay (c) Forward 

Figure 1. Input and kernel load scheme. 

 

PE

PE

OM

OM

OMPE

PE OM

 

PE

PE OM

OMPE

PE

 

(a) Broadcast (b) Stay (c) Forward 

Figure 2. Output store scheme. 

OM

Ad
de

r T
re

e

PE

PE

PE

PE

MEM1

MEM3

MEM3

MEM3

MEM3

0

0

0

0

MEM2

MEM2

 
(a) BFS & FBS 

 

MEM2

MEM1

MEM3

MEM3

0

MEM2

MEM2

MEM2

 
(b) BSF & SBF 

 

MEM2

MEM2

MEM2

MEM2

MEM1

MEM3

MEM3

0

 
(c) FSF & SFF 

 

MEM2

MEM2

MEM1

MEM3

MEM3

MEM3

MEM3

0

0

0

0

 
(d) FFS & FFS* 

 
MEM2BFS, BSF, FSF, FFS : = IM, = KM, = OMMEM3MEM1

MEM2FBS, SBF, SFF, FFS*: = KM, = IM, = OMMEM3MEM1

 
 
Figure 3. 2D convolutional architectures for eight structure. 

Authorized licensed use limited to: Chungnam National University. Downloaded on April 11,2023 at 11:37:07 UTC from IEEE Xplore.  Restrictions apply. 



circuit must be added to complete convolution. These include 
BFF, FBF, and FFF. As a result, 19 out of 27 configurations 
are ruled out because they require substantial hardware 
resources. 

This paper describes and compares the hardware 
configurations of the BFS, BSF, FSF, and FFS structures 
presented in [5] and the FBS, SBF, SFF, and FFS* structures 
added in this paper. FFS* refers to a structure that differs 
fractionally from the FFS presented in [5]. Note that the four 
previously presented combinations in [5] and the four 
presented structures in this paper correspond in different 
forms. 

This means that modifying the input and kernel data flow 
results in the corresponding configuration, while the overall 
structure is maintained. Based on Fig. 1 and 2, which depict 
the fundamental data flow, Fig. 3 illustrates the four structures 
presented in [5] and the four newly presented structures. Due 
to space limitations, the basic structure of [5] and the 
presented structure have been integrated and shown together, 
and it can be confirmed that only IM and KM memory 
modifications can be made to the pair's corresponding data 
flow. In Fig. 3(a), if assigned as IM, KM, and OM of MEM1, 
MEM2, and MEM3, it operates as BFS, whereas if assigned 

as KM, IM, and OM of MEM1, MEM2, and MEM3, it 
operates as FBS. (BSF, SBF), (FSF, SFF), (FFS, FFS*) pairs 
can all be described in the same way. Lastly, we summarize 
the hardware requirements for each structure's 2D 
convolutional architecture based on Fig. 3. Table 1 presents 
the processing time, which is the time required to perform the 
convolution of Equation (1), and the necessary hardware 
resources, PE, registers, and memories. Note that the memory 
access is included for energy consumption analysis. 

IV. ANALYSIS RESULTS OF 2D CNN STRUCTURE 

In order to determine the advantages and disadvantages of 
each candidate, Fig. 4 shows the performance of various L and 
K combinations. This is to consider the wide range of 
networks with various L and K combinations, including 
general convolutional layers and sophisticated convolutional 
layers. We denote that a classic convolutional layer is a case 
where L  K and a deep convolutional layer is a case where L 
 K. In Fig. 4, K was changed from 5 to 11 with the input size 
L fixed to 32, and L was changed from 4 to 12 with the kernel 
size K fixed to 13. First, we examine the processing time, 
which is the amount of time required to perform the 
convolution of (1). According to Fig. 4(a) and (b), FBS, SBF, 
SFF, and FFS* are superior for the general convolutional layer, 

TABLE I.  HARDWARE RESOURCES REQUIRED FOR 2D CONVOLUTION. 

Architecture 
Processing 

Time 
Minimum   
# of PE* 

# of Registers Memory Size Memory Access 

Input Kernel Output IM KM OM IM KM OM 

BFS[5] L2 K2 L2 KL3 K2L2 L K3 KL L2 KL KL2 

BSF[5] L2 K2 L2 K2 K2L2 L K2 K2L L2 K2 KL2 

FSF[5] L2 K2 K2L2 K2 K2L2 L K2 K2L L2 K2 KL2 

FFS[5] L2 K2 K2L2 KL3 K2L2 L K3 KL L2 KL KL2 

FBS K2 L2 K3L K2 K2L2 L3 K KL KL K2 K2L 

SBF K2 L2 L2 K2 K2L2 L2 K KL2 L2 K2 K2L 

SFF K2 L2 L2 K2L2 K2L2 L2 K KL2 L2 K2 K2L 

FFS* K2 L2 K3L K2L2 K2L2 L3 K KL KL K2 K2L 

Minimum # of PE*: minimum number of PEs to maximize data reuse 

0

250

500

750

1000

K = 5

Processing time (L = 32)

K = 7 K = 11

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 K = 5
0

10000

20000

30000

40000
Area (L = 32)

K = 7 K = 11

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 
0

250

500

750

1000

Energy consumption (L = 32)

K = 5 K = 7 K = 11

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 
(a) 

 
(c) 

 
(e) 

 

0

50

100

150

200

L = 4

Processing time (K = 13)

L = 8 L = 12

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 

1000

2000

0

L = 4

Area (K = 13)

L = 8 L = 12

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 
0

150

300

450

600

L = 4

Energy consumption (K = 13)

L = 8 L = 12

 BFS
 BSF
 FSF
 FFS
 FBS
 SBF
 SFF
 FFS*

 
(b) (d) (f) 

Figure 4. Comparison of hardware performance for eight structures. 
 

Authorized licensed use limited to: Chungnam National University. Downloaded on April 11,2023 at 11:37:07 UTC from IEEE Xplore.  Restrictions apply. 



and BFS, BSF, FSF, and FFS have a short delay time for the 
deep convolutional layer. Second, the memory size and 
number of PE were used to calculate the total hardware area 
necessary to perform the convolution of (1). Comparing Fig. 
4(c) and (d), BFS and FFS use a smaller area for a general 
convolutional layer, whereas FBS and FFS* use a smaller area 
for a deep convolutional layer. Finally, the energy used to 
perform the convolution of (1) was compared using the 
activity of registers and memories. In Fig. 4 (e) and (f), it can 
be seen that BSF consumes the least energy in the case of a 
general convolutional layer, and SBF consumes the least 
amount of energy for a deep convolutional layer. 

V. EXPERIMENTAL RESULTS 

This paper describes and analyzes eight structures by 
including four structures from [5] and the proposed four 
candidates. According to analysis, FBS, SBF, SFF, and FFS* 
are the quickest in processing time, BFS and FFS have the 
lowest size, and BSF spends the least amount of energy for a 
conventional convolution layer. Whereas BFS, BSF, FSF, and 
FFS have the shortest processing time, FBS and FFS* have 
the lowest area, and SBF spends the least energy for a deep 
convolutional layer. This demonstrates that the optimal 
structure varies based on the shape of the neural network and 
the user's desired performance orientation. Using the findings 
of this study, we can provide a solution for the optimal 
hardware structure aimed at the future development of various 
types of neural networks in addition to the classic ones. 

 

ACKNOWLEDGMENT 

This work was supported by the National Research 
Foundation of Korea(NRF) grant funded by the Korea 
government(MSIT) (No. 2022R1A5A8026986), supported by 
Institute of Information & communications Technology 
Planning & Evaluation (IITP) grant funded by the Korea 
government(MSIT) (2022-0-01170), and the EDA tool was 
supported by the IC Design Education Center (IDEC), Korea. 

REFERENCES 

 
[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet 

classification with deep convolutional neural networks," in 
Communications of the ACM, vol. 60, no. 6, pp. 84-90, 2017. 

[2] J. Cong and B. Xiao, “Minimizing computation in convolutional neural 
networks,” in Proc.  Int.  Conf.  Artif.  Neural Network, pp. 281-290, 
2014. 

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy- 
efficient reconfigurable accelerator for deep convolutional neural 
networks,” in IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 
January 2017. 

[4] B. Moons, R. Uytterhdoeven, W. Dehaene, and M. Verhelst, 
“ENVISION: A 0.26-to-10TOPS/W subword-parallel dynamic-
voltage- accuracy-frequency-scalable convolutional neural network 
processor in 28 nm FDSOI,” in IEEE Int. Solid-State Circuits Conf. 
(ISSCC) Dig. Tech. Papers, pp. 246–248, February. 2017. 

[5] Jo, Jihyuck, Suchang Kim, and In-Cheol Park. "Energy-efficient 
convolution architecture based on the rescheduled dataflow," in IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, 
pp. 4196-4207, 2018

 

Authorized licensed use limited to: Chungnam National University. Downloaded on April 11,2023 at 11:37:07 UTC from IEEE Xplore.  Restrictions apply. 


